Nanofluid Properties for Forced Convection Heat Transfer: An Overview
نویسندگان
چکیده
منابع مشابه
Analysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes
In the present study, an experimental study is carried out to investigate the effect of adding Al and Cu nanoparticles to the base fluid (water) on the heat transfer rate in a spirally coiled tube. The spirally coiled tube is fabricated from the straight copper tube with the inner and outer coil diameters of 100 and 420 mm, respectively. The experiments have been done for water and two types of...
متن کاملAn Experimental Study of Heat Transfer During Forced Air Convection
Cast aluminum alloys are usually subject to solution treatment, quenching, and aging hardening for improved mechanical properties. Cooling rate during quenching plays an important role in residual stress, distortion, and mechanical property distributions in the resultant cast aluminum components. As the cooling rates of work pieces heavily depend on the interfacial heat transfer coefficient (HT...
متن کاملHeat Transfer Study of Perforated Fin under Forced Convection
Fins are protrusions on a heat transfer surface to augment heat transfer rate from it. The increase in area exposed to convection in case of finned surfaces results in increased heat transfer rate. In this study heat transfer characteristics of a pin fin with perforation is numerically analyzed. A pin fin is fabricated and experiments are done under forced convection conditions. The experimenta...
متن کاملAn Investigation into Forced Convection Heat Transfer through Porous Media
Theoretical and experimental investigations of forced convection heat transfer from a heated flat plate embedded in porous media with a constant heat flux had been carried out in the present work. The experimental investigation included a set of experiments carried out to study the effect of Reynolds number and heat flux on the temperature profile and local Nusselt number. The investigation cov...
متن کاملNumerical simulation of mixed convection heat transfer of nanofluid in an inclined enclosure by applying LBM
Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal flow field. The enclosure's hot lid has the constant velocity of U0 while its cold lower wall has no motion. Moreover, sidewalls ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES
سال: 2013
ISSN: 2289-4659,2231-8380
DOI: 10.15282/jmes.4.2013.4.0037